Source code for orbkit.grid

# -*- coding: iso-8859-1 -*-
'''Module for creating and manipulating the grid on which all computations 
are performed.'''
'''
orbkit
Gunter Hermann, Vincent Pohl, Lukas Eugen Marsoner Steinkasserer, Axel Schild, and Jean Christophe Tremblay

This file is part of orbkit.

orbkit is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as 
published by the Free Software Foundation, either version 3 of 
the License, or any later version.

orbkit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public 
License along with orbkit.  If not, see <http://www.gnu.org/licenses/>.
'''

# Import general modules
import sys
import numpy

# Import orbkit modules
from orbkit import cy_grid

[docs]def grid_init(is_vector=False, force=False): '''Sets up the regular x-, y-, z-grid specified by the global lists: :min\_: List of minimum grid values :max\_: List of maximum grid values :N\_: List of number of grid points **Parameters:** is_vector : bool, optional If True, converts the regular grid to a vector grid. ''' # All grid related variables should be globals global x, y, z, d3r, min_, max_, N_, delta_, grid, is_initialized, is_regular if is_initialized and not force: return 0 # Initialize a list for the grid grid = [[],[],[]] # Loop over the three dimensions for ii in range(3): if max_[ii] == min_[ii]: # If min-value is equal to max-value, write only min-value to grid grid[ii] = numpy.array([min_[ii]],dtype=numpy.float64) delta_[ii] = 1 N_[ii] = 1 else: # Calculate the grid using the input parameters if delta_[ii]: grid[ii] = numpy.arange(min_[ii],max_[ii]+delta_[ii],delta_[ii],dtype=numpy.float64) N_[ii] = len(grid[ii]) else: grid[ii] = numpy.array(numpy.linspace(min_[ii],max_[ii],N_[ii]),dtype=numpy.float64) # backward compatibility delta_[ii] = grid[ii][1]-grid[ii][0] # Write grid x = grid[0] y = grid[1] z = grid[2] d3r = numpy.product(delta_) is_initialized = True is_regular = True if is_vector: grid2vector() else: setattr(sys.modules[__name__],'is_vector',False)
# grid_init # Synonyms init = grid_init init_grid = grid_init
[docs]def get_grid(start='\t'): '''Returns a string describing the current x-, y-, z-grid. ''' coord = ['x', 'y', 'z'] grid = [x, y, z] display = '' for ii in range(3): display += ('%(s)s%(c)s[0] = %(min).2f %(c)s[-1] = %(max).2f N%(c)s = %(N)d ' % {'s': start, 'c': coord[ii], 'min': grid[ii][0], 'max': grid[ii][-1], 'N': len(grid[ii])}) if max_[ii] != min_[ii] and delta_[ii] != 0.: # Print the delta values only if min-value is not equal to max-value display += 'd%(c)s = %(d).3f' % {'c': coord[ii], 'd': delta_[ii]} display += '\n' return display
# get_grid
[docs]def tolist(): '''Returns a list containing the current x-, y-, z-grid. ''' return [numpy.copy(x), numpy.copy(y), numpy.copy(z)]
[docs]def todict(): '''Returns a dictionary containing the current x-, y-, z-grid. ''' return {'x': x, 'y': y, 'z': z}
[docs]def get_shape(): '''Returns the shape of the grid. ''' if not is_initialized: raise ValueError('`grid.get_shape` requires the grid to be initialized.') return (len(x),) if is_vector else tuple(N_)
[docs]def set_grid(xnew,ynew,znew,is_vector=None): '''Sets the x-, y-, z-grid. ''' global x, y, z, is_initialized coord = ['x', 'y', 'z'] NumberTypes = (int, float) #: Contains the supported types. length = [] grid = [xnew,ynew,znew] for i,c in enumerate(grid): # Check the type of the grid if isinstance(c,NumberTypes): c = numpy.array([c],dtype=numpy.float64) elif isinstance(c,(list,tuple)): c = numpy.array(c,dtype=numpy.float64) elif not isinstance(c,numpy.ndarray): raise TypeError('%s (dimension %d) is of inappropriate type. (%s)' %(coord[i],i,type(c))) # Reshape if necessary if c.ndim != 1: c = c.reshape((-1,)) # Save new grid grid[i] = c length.append(len(c)) # Produce some information about the grid. info_string = 'Grid has been set up...' info_string += ('\n\tIf the input coordinates will be used for a regular grid,' + '\n\tit will contain %dx%dx%d=%d data points.' % (tuple(length) + (numpy.product(length),)) ) if length[0] == length[1] == length[2]: info_string += ('\n\n\tIf the input coordinates will be used for a vector grid,' + '\n\tit will contain %d data points.' % length[0] ) else: info_string += ('\n\n\tAttention: Due to their different length, the grid variables' + '\n\tcannot be used for a computation using a vector grid!' ) # Write grid x = grid[0] y = grid[1] z = grid[2] is_initialized = True if isinstance(is_vector,bool): setattr(sys.modules[__name__],'is_vector',is_vector) info_string += ('\n\nThe variable `grid.is_vector` has been set to %s.' % is_vector) #set_boundaries((is_vector==False)) return info_string
# set_grid def set_boundaries(is_regular,Nx=None,Ny=None,Nz=None): global is_vector, min_, max_, delta_, N_ min_ = [x.min(),y.min(),z.min()] max_ = [x.max(),y.max(),z.max()] if is_regular: N_ = [len(x),len(y),len(z)] delta_ = [x[1]-x[0],y[1]-y[0],z[1]-z[0]] elif all([Nx,Ny,Nz]): N_ = [Nx,Ny,Nz] grid = numpy.array([x,y,z]).reshape(3,Nx,Ny,Nz) delta_ = [grid[1,0,0]-grid[0,0,0], grid[0,1,0]-grid[0,0,0], grid[0,0,1]-grid[0,0,0]] def get_bbox(): bbox = numpy.zeros(6) bbox[::2] = min_ bbox[1::2] = max_ return bbox
[docs]def grid2vector(): '''Converts the regular grid characterized by x-, y-, z-vectors to a (3, (Nx*Ny*Nz)) grid matrix (vector grid). Reverse operation: :mod:`orbkit.grid.vector2grid` ''' # All grid related variables should be globals global x, y, z, is_vector, is_regular if not is_initialized: raise ValueError('You have to initialize a grid before calling '+ ' `grid.grid2vector`, i.e., `grid.is_initialized=True`.') x,y,z = cy_grid.grid2vector(x,y,z) is_vector = True is_regular = True
[docs]def vector2grid(Nx,Ny,Nz): '''Converts the (3, (Nx*Ny*Nz)) grid matrix (vector grid) back to the regular grid characterized by the x-, y-, z-vectors. Reverse operation: :mod:`orbkit.grid.grid2vector` ''' # All grid related variables should be globals global x, y, z, is_vector if not is_initialized: raise ValueError('You have to initialize a grid before calling '+ ' `grid.vector2grid`. '+ '(`grid.is_initialized == True`)') if not is_regular: raise ValueError('The grid has to regular. '+ '(`grid.is_regular == True`)') if not (len(x) == len(y) == len(z)): raise ValueError('Not a valid vector grid, i.e., dimensions of '+ 'x-, y-, and z- coordinate differ.') if (Nx*Ny*Nz) != len(x): raise ValueError('It has to hold that `len(x) = (N_x * N_y * N_z)`') x,y,z = cy_grid.vector2grid(x,y,z,Nx,Ny,Nz) is_vector = False
[docs]def matrix_grid2vector(matrix): '''Converts the (Nx,Ny,Nz) data matrix back to the regular grid (Nx,Nz,Ny) ''' matrix = numpy.asarray(matrix,dtype=float) if matrix.ndim != 3: raise ValueError('`matrix` has to be 3d matrix.') return numpy.reshape(matrix,(-1,))
[docs]def matrix_vector2grid(matrix,Nx=None,Ny=None,Nz=None): '''Converts the (Nx*Ny*Nz) data matrix back to the (Nx,Nz,Ny) ''' matrix = numpy.asarray(matrix,dtype=float) if matrix.ndim != 1 or (Nx*Ny*Nz) != len(matrix): raise ValueError('`matrix` has to be one dimensional with the length '+ '`len(matrix) = N_x * N_y * N_z`.'+ 'For Nd matrices use the function `grid.mv2g`.') return numpy.reshape(matrix,(Nx,Ny,Nz))
[docs]def mv2g(**kwargs): '''Converts all `numpy.ndarrays` given as the keyword arguments (`**kwargs`) from a vector grid of `shape=(..., Nx*Ny*Nz, ...,)` to a regular grid of `shape=(..., Nx, Ny, Nz, ...,)`, and, if more than one `**kwargs` is given, returns it as a dictionary. Hint: The global values for the grid dimensionality, i.e., :mod:`grid.N_`, are used for reshaping. ''' import itertools return_val = {} for i,j in kwargs.items(): j = numpy.asarray(j,dtype=float) shape = numpy.shape(j) where = numpy.argwhere(shape==numpy.product(N_))[0,0] return_val[i] = numpy.zeros(shape[:where]+tuple(N_)+shape[where+1:]) for key in itertools.product(*[range(k) for k in (shape[:where] + shape[where+1:])]): obj = [slice(k,k+1) for k in key] for r in range(3): obj.insert(where,slice(None,None)) return_val[i][obj] = matrix_vector2grid(j[obj[:where]+obj[where+2:]].reshape((-1,)), **dict(zip(['Nx','Ny','Nz'],N_))) return list(return_val.values())[0] if len(return_val.values()) == 1 else return_val
[docs]def grid_sym_op(symop): '''Executes given symmetry operation on vector grid ''' # All grid related variables should be globals global x, y, z, is_vector, is_regular symop = numpy.asarray(symop,dtype=numpy.float64) if symop.shape != (3,3): raise ValueError('`symop` needs to be a numpy array with shape=(3,3)') if not is_initialized: raise ValueError('You have to initialize a grid before executing a '+ ' symmetry operation on it. (`grid.is_initialized == True`)') if not is_vector: grid2vector() x, y, z = numpy.dot(symop,numpy.array([x,y,z])) # The grid is not regular anymore. is_regular = False
[docs]def grid_translate(dx,dy,dz): '''Translates the grid by (dx,dy,dz). ''' global x,y,z x += dx y += dy z += dz
[docs]def rot(ang,axis): '''Creates matrix representation for arbitrary rotations Angle has to be defined in radians, e.g., numpy.pi/2.0 Axis has to be specified as follows: x-axis -> axis=0, y-axis -> axis=1, z-axis -> axis=2, ''' # Initialize cosine, sinus, and additional numpy functions cos = numpy.cos sin = numpy.sin array = numpy.array insert = numpy.insert # Create rotation matrix around defined rotations axis rotmatrix = array([[ cos(ang), sin(ang)], [-sin(ang), cos(ang)]]) rotmatrix = insert(insert(rotmatrix,axis,0,axis=0),axis,0,axis=1) rotmatrix[axis,axis] = 1 return rotmatrix
# rot
[docs]def reflect(plane): '''Creates matrix representation for reflection Plane has to be specified as follows: xy-plane -> plane= numpy.array([0,1]) xz-plane -> plane= numpy.array([0,2]) yz-plane -> plane= numpy.array([1,2]) ''' # Create reflection matrix for defined plane sigma = numpy.array([[1,0,0],[0,1,0],[0,0,1]],dtype=float) axis = 3-numpy.sum(plane) sigma[axis,axis] *= -1.0 return sigma
# reflect
[docs]def inversion(): '''Transfer matrix representation for inversion ''' # Inversion matrix inv = numpy.array([[-1,0,0],[0,-1,0],[0,0,-1]],dtype=float) # inversion return inv
# inversion
[docs]def sph2cart_vector(r,theta,phi): '''Converts a spherical regular grid matrix (r, theta, phi) to a Cartesian grid matrix (vector grid) with the shape (3, (Nr*Ntheta*Nphi)). **Parameters:** r : numpy.ndarray, shape=(Nr,) Specifies radial distance. theta : numpy.ndarray, shape=(Ntheta,) Specifies polar angle. phi : numpy.ndarray, shape=(Nphi,) Specifies azimuth angle. ''' # All grid related variables should be globals global x, y, z, is_initialized, is_vector, is_regular x,y,z = cy_grid.sph2cart(numpy.asarray(r,dtype=numpy.float64), numpy.asarray(theta,dtype=numpy.float64), numpy.asarray(phi,dtype=numpy.float64)) is_initialized = True is_vector = True is_regular = False
# sph2cart_vector
[docs]def cyl2cart_vector(r,phi,zed): '''Converts a cylindrical regular grid matrix (r, phi, zed) to a Cartesian grid matrix (vector grid) with the shape (3, (Nr*Nphi*Nzed)). **Parameters:** r : numpy.ndarray, shape=(Nr,) Specifies radial distance. phi : numpy.ndarray, shape=(Nphi,) Specifies azimuth angle. zed : numpy.ndarray, shape=(Nz,) Specifies z distance. ''' # All grid related variables should be globals global x, y, z, is_initialized, is_vector, is_regular x,y,z = cy_grid.cyl2cart(numpy.asarray(r,dtype=numpy.float64), numpy.asarray(phi,dtype=numpy.float64), numpy.asarray(zed,dtype=numpy.float64)) is_initialized = True is_vector = True is_regular = False
# cyl2cart_vector
[docs]def random_grid(geo_spec,N=1e6,scale=0.5): '''Creates a normally distributed grid around the atom postions (geo_spec). **Parameters:** geo_spec : See :ref:`Central Variables` for details. N : int Number of points distributed around each atom scale : float Width of normal distribution ''' # All grid related variables should be globals global x, y, z, is_initialized, is_vector, is_regular geo_spec = numpy.array(geo_spec) at_num = len(geo_spec) # Initialize a list for the grid grid = numpy.zeros((3,at_num,N)) # Loop over the three dimensions for ii_d in range(3): for ii_a in range(at_num): grid[ii_d,ii_a,:] = numpy.random.normal(loc=geo_spec[ii_a,ii_d],scale=0.5,size=N) grid = numpy.reshape(grid,(3,N*at_num)) # Write grid x = grid[0] y = grid[1] z = grid[2] is_initialized = True is_vector = True is_regular = False
# random_grid
[docs]def read(filename, comment='#'): '''Reads a grid from a plain text file. **Parameters:** fid : str Specifies the filename of the grid file. **Returns:** is_vector : bool If True, a vector grid is used for the computations. **Supported Formats:** Regular Grid:: # Regular Grid Example File # Format: # x xmin xmax Nx # y ymin ymax Ny # z zmin zmax Nz x -5 5 101 y -2 2 51 z 0 0 1 Vector Grid:: # Vectorized Grid Example File # The header 'x y z' is mandatory! x y z -5 -5 0 -4 -5 0 -3 -5 0 0 0 0 2 -1e-1 9.78 **Hint:** If a line starts with '#', it will be skipped. Please, do not use '#' at the end of a line! ''' # All grid related variables should be globals global x, y, z, min_, max_, N_, delta_, is_initialized, is_regular, is_vector def check(i, is_vector): if (len(i) == 3) and (is_vector is None or is_vector == True): return True elif (len(i) == 4) and (is_vector is None or is_vector == False): return False else: raise IOError('Inconsistency in Grid File in "%s"' % i) # Go through the file line by line is_vector = None is_dx = [False for i in range(3)] # Last column grid spacing not number of points grid = [[] for i in range(3)] dim = 'xyz' index = [[] for i in range(3)] with open(filename) as fileobject: for l,line in enumerate(fileobject): cl = line.split() # The Current Line split into segments if not (cl == [] or cl[0] == comment): is_vector = check(cl, is_vector) if is_vector: for i,j in enumerate(cl): if index[i] == []: index[i] = dim.find(j) else: grid[index[i]].append(j) else: grid[dim.find(cl[0].lower())] = cl[1:] is_dx[dim.find(cl[0].lower())] = '.' in cl[-1] # Convert the variables grid = numpy.array(grid,dtype=numpy.float64) if is_vector: x = grid[0,:] y = grid[1,:] z = grid[2,:] is_initialized = True # The grid will be seen as initialized is_regular = False # The grid is assumed to be non-regular else: min_ = grid[:,0] max_ = grid[:,1] for i in range(3): if is_dx[i]: delta_[i] = grid[i,2] else: N_[i] = int(grid[i,2]) return is_vector
[docs]def adjust_to_geo(qc,extend=5.0,step=0.1): '''Adjusts the grid boundaries to the molecular geometry. **Parameters:** qc : QCinfo class See :ref:`Central Variables` for details. extend : float Specifies the value by which the grid boundaries are extended in each direction. step : float Specifies the grid spacing. ''' global min_, max_, N_, delta_, is_vector, is_initialized for i in range(3): min_[i] = min(qc.geo_spec[:,i]) - (extend) max_[i] = max(qc.geo_spec[:,i]) + (extend) dist = (max_[i] - min_[i]) N_[i] = int(numpy.ceil(dist/step))+1 rest = (N_[i]-1)*step - dist # Correct minimum and maximum value, if necessary min_[i] -= rest/2. max_[i] += rest/2. delta_[i] = step is_vector = False is_initialized = False
def check_atom_select(atom,geo_info,geo_spec,interactive=True, display=sys.stdout.write): if not((isinstance(atom, int)) and (0 < atom <= len(geo_spec))): display('Not a Valid atom number for centering the grid') display('Coose a valid index:') for i,j in enumerate(geo_info): display('\t%d\t%s\t%s' % (i+1,j[0],geo_spec[i])) if interactive: while not((isinstance(atom, int)) and (0 < atom <= len(geo_spec))): try: atom = int(raw_input('Please insert a correct index: ')) except ValueError: pass else: raise IOError('Insert a correct filename for the MO list!') return atom
[docs]def center_grid(ac,display=sys.stdout.write): '''Centers the grid to the point ac and to the origin (0,0,0). ''' # All grid related variables should be globals global x, y, z, d3r, min_, max_, N_, delta_ if not is_regular: raise ValueError('Center grid is only supported for regular grids.') was_vector = is_vector if was_vector: vector2grid(*N_) P=[numpy.zeros((3,1)), numpy.reshape(ac,(3,1))] d_tilde = numpy.abs(P[0] - P[1]) N_tilde = numpy.round(numpy.abs(d_tilde / delta_)) for ii in range(3): if N_tilde[ii] != 0: delta_[ii] = d_tilde[ii] / N_tilde[ii] grid = [x, y, z] for ii in range(3): if len(grid[ii]) != 1: position = numpy.nonzero(ac[ii] <= grid[ii])[0][0] g = numpy.abs(grid[ii][position] - ac[ii]); c = 1/2.*delta_[ii] - g; grid[ii] += c; x = grid[0] y = grid[1] z = grid[2] d3r = numpy.product(delta_) min_ = [min(grid[0]), min(grid[1]), min(grid[2])] max_ = [max(grid[0]), max(grid[1]), max(grid[2])] N_ = [len(grid[0]), len(grid[1]), len(grid[2])] display('Centered Grid to (%.2f %.2f %.2f): \n' % (ac[0], ac[1], ac[2])) display(get_grid()) for ii in range(3): if len(numpy.nonzero(0. == numpy.round(grid[ii]*10000))[0])!= 0: display('Warning!\n\tAt least one grid point is equal to zero.\n') if was_vector: grid2vector()
# center_grid
[docs]def reset_grid(): '''Resets the grid parameters.''' global is_initialized, is_vector, is_regular, min_, max_, N_ is_initialized = False is_vector = True is_regular = False min_ = [-8.0, -8.0, -8.0] max_ = [ 8.0, 8.0, 8.0] N_ = [ 101, 101, 101] delta_ = numpy.zeros((3,1))
# reset_grid # Default values for the grid parameters min_ = [-8.0, -8.0, -8.0] #: Specifies minimum grid values (regular grid). max_ = [ 8.0, 8.0, 8.0] #: Specifies maximum grid values (regular grid). N_ = [ 101, 101, 101] #: Specifies the number of grid points (regular grid). # Initialize some lists x = numpy.array([0.0]) #: Contains the x-coordinates. y = numpy.array([0.0]) #: Contains the y-coordinates. z = numpy.array([0.0]) #: Contains the z-coordinates. delta_ = numpy.zeros((3,1)) #: Contains the grid spacing. d3r = 0.0 #: A volume element is_initialized = False #: If True, the grid is assumed to be initialized. is_vector = True #: If True, the grid is assumed to be vector grid. is_regular = False #: If True, the grid is assumed to be regular, i.e., a conversion of a vector grid to a regular grid is possible, if ``N_`` is set.